QISKIT Global Summer School 2020 Notes

Sandesh Katakam

January 2022

Contents

1	Lecture 1: Qubits and Quantum States, Quantum Circuits, Measurements - Part 1	1
	1.1 From bits to qubits: Dirac Notation, Measurements, Bloch Sphere	1
	1.2 Quantum Circuits: basic single-qubit and two-qubit gate, multi-partite quantum states	
	1.3 Entanglement: Bell states, Teleportation, Q-shpere	4
	1.4 Mon, Sept 9: Review of Newtonian Mechanics	4
	1.5 Tue, Sept 10: Alternative Formulations of Newtonian Mechanics	4
2		4
_	Lasture 1. Oubits and Quantum States, Quantum Cinquits, Massure	

1 Lecture 1: Qubits and Quantum States, Quantum Circuits, Measurements - Part 1

1.1 From bits to qubits: Dirac Notation, Measurements, Bloch Sphere

- Classical states for computation are either "0" or "1"
- In QM, a state can be in superposition, i.e., simultaneously in "0" and "1"
 - Superposition's allow to perform calculations on many gates at the same time.
 - Quantum algorithms with exponential speed-up.
 - BUT: once we measure the superpositions state, it will collapse to one of its states.
 - (we can only get one "answer" and not all answer to all states in superposition)
 - It is not that easy to design quantum algorithms, but we use interference effects.
 - ("wrong answers" cancel each other out, while the "right answer" remains)

• Dirac Notation:

- Used to describe quantum states: Let

$$a, b \in \mathbb{C}^2$$

* **ket** :
$$|a\rangle = \binom{a_1}{a_2}$$

* **bra** :
$$\langle b|=|b\rangle^t=\begin{pmatrix}b_1\\b_2\end{pmatrix}^t=\begin{pmatrix}b_1^*&b_2^*\end{pmatrix}$$

* **bra** – **ket** :
$$\langle b|a\rangle = a_1 \times b_1^* + a_2 \times b_2^* = \langle a|b\rangle^*$$

*
$$\mathbf{ket} - \mathbf{bra} : |a\rangle\langle b| = \begin{pmatrix} a_1b_1^* & a_1b_2^* \\ a_2b_1^* & a_2b_2^* \end{pmatrix}$$

- We define the states:

$$|0\rangle := \begin{pmatrix} 0 & 1 \end{pmatrix}$$

which are orthogonal:

$$\langle 0|1\rangle = 1 \cdot 0 + 0 \cdot 1$$

- All quantum states are normalized, i.e.,

$$\langle \psi | \psi \rangle = 1$$

e.g.

$$|\psi\rangle = \frac{1}{\sqrt{2}} \cdot (|0\rangle + |1\rangle) = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

• Measurements:

- We choose orthogonal bases to describe and measure quantum states (projective measurement)
- During a measurement onto the basis $\{ |0\rangle, |1\rangle \}$, the state will collapse into either state $|0\rangle$ or $|1\rangle$ as those are the eigenstates of σ_z , we call this a Z-measurement
- There are infinitely many different bases, but other common ones are: $\left\{ \begin{array}{l} |+\rangle := \frac{1}{\sqrt{2}}, \; |-\rangle := \frac{1}{\sqrt{2}} \end{array} \right\} \text{ and } \left\{ \begin{array}{l} |+i\rangle := \frac{1}{\sqrt{2}}, \; |-i\rangle := \frac{1}{\sqrt{2}} \right\} \\ \text{corresponding to the eigenstates of } \sigma_x \text{ and } \sigma_y. \end{array}$
- Born Rule: The probability that a state $|\psi\rangle$ collapses during a projective measurement onto the basis $\{|x\rangle, |x\rangle\}$ to the state $|x\rangle$ is given by:

$$P(x) = |\langle x | \psi \rangle|^2$$

$$\sum_{i} P(x_i) = 1$$

* Examples:

· $|\psi\rangle=\frac{1}{\sqrt{3}}(|0\rangle+\sqrt{2}|1\rangle)$ is measured in the basis $\left\{|0\rangle\:,\:|1\rangle\right\}$:

$$P(0) = \left| \langle 0 | * \frac{1}{\sqrt{3}} (|0\rangle + \sqrt{2} \cdot |1\rangle) \right|^2 = \left| \frac{1}{\sqrt{3}} \cdot \langle 0 | 0\rangle + \frac{\sqrt{2}}{\sqrt{3}} \cdot \langle 0 | 1\rangle \right|^2 = \frac{1}{3} ; P(1) = \frac{2}{3}$$

 $\cdot |\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$ is measured in the basis $\{ |+\rangle , |-\rangle \}$:

$$P(+) = |\langle +|\psi\rangle|^2 = \left|\frac{1}{\sqrt{2}} \cdot (\langle 0| + \langle 1|) + \frac{1}{\sqrt{2}} \cdot (|0\rangle - |1\rangle)\right|^2$$
$$= \frac{1}{4} \left|\langle 0|0\rangle - \langle 0|1\rangle + \langle 1|0\rangle - \langle 1|1\rangle\right|^2 = 0$$

expected as $\langle +|\psi\rangle = \langle +|-\rangle = 0$

Figure 1: Bloch Sphere

• Bloch Sphere:

– We can write any normalized (pure) state as $|\psi\rangle = \cos\frac{\theta}{2}\cdot|0\rangle + e^{\iota\phi}\sin\frac{\theta}{2}\cdot|1\rangle$, where $\phi\in[0,2\pi]$ describes the relative phase and $\theta\in[0,\pi]$ determines the probability to measure $|0\rangle$ / $|1\rangle$:

$$P(|0\rangle) = \cos^2 \frac{\theta}{2}$$
, $P(|1\rangle) = \sin^2 \frac{\theta}{2}$

- * All normalized pure states can be illustrated on the surface of a sphere with radius \vec{r} , which we call the **Bloch Sphere**
- * The coordinates of such a state are given by the **Bloch Vector**:

$$\vec{r} = \begin{pmatrix} \sin \theta \cos \phi \\ \sin \theta \sin \phi \\ \cos \theta \end{pmatrix}$$

- Examples:

$$|0\rangle:\theta=0,\;\phi\;is\;arbitary\to\vec{r}=\begin{pmatrix}0\\0\\1\end{pmatrix}$$

$$|1\rangle:\theta=\pi,\;\phi\;is\;arbitary\to\vec{r}=\begin{pmatrix}0\\0\\-1\end{pmatrix}$$

$$|+\rangle:\theta=\frac{\pi}{2},\;\phi=0\to\vec{r}=\begin{pmatrix}1\\0\\0\end{pmatrix}$$

$$|-\rangle:\theta=\frac{\pi}{2},\;\phi=\pi\to\vec{r}=\begin{pmatrix}-1\\0\\0\end{pmatrix}$$

$$|-i\rangle:\theta=\frac{\pi}{2},\;\phi=\frac{3\pi}{2}\to\vec{r}=\begin{pmatrix}0\\0\\1\end{pmatrix}$$

- <u>Be Careful:</u> On the Bloch sphere, angles are twice as big as in Hilbert Space, e.g. $|0\rangle |1\rangle$ are orthogonal, but on the Bloch sphere their angle is 180deg . For a general state— $\psi\rangle = \cos\frac{\theta}{2}|0\rangle + ...$ Here θ is the angle on the Bloch Sphere, while $\frac{\theta}{2}$ is the actual angle in the Hilbert Space!
- Z-measurement corresponds to a projection onto the z-axis and analogously for X and Y!

1.2 Quantum Circuits: basic single-qubit and two-qubit gate, multi-partite quantum states

1.3 Entanglement: Bell states, Teleportation, Q-shpere

Examples include:

- the **double slit experiment** (done with light by Thomas Young in 1801, and with electrons by Tonomura in 1986)
- the photoelectric effect (analyzed by Einstein in 1905 in fact his Nobel-winning work)
- the "quantum Venn diagram" puzzle, involving the overlaps of three polarizing filters
- the stability of the hydrogen atom (i.e., the fact that the electron doesn't lose energy and spiral inward toward the proton).

Remark 1. How now, brown cow?

Definition 1. The Feynman kernel is given by

$$K(x_b, t_b; x_a, t_a) = \int_{x(t_a)=x_a}^{x(t_b)=x_b} e^{(i/\hbar)S[x(t)]} \mathscr{D}x(t).$$

1.4 Mon, Sept 9: Review of Newtonian Mechanics

• A Newtonian trajectory $\mathbf{x}(t)$ $(t \in \mathbb{R})$ is given by solutions of the second order ODE

$$m \ddot{\mathbf{x}}(t) = \mathbf{F}(\mathbf{x}(t)),$$

where m > 0 is a basic parameter associated with a given Newtonian particle, called its mass.

• The force field $\mathbf{F}(\mathbf{x})$ — which we take to be static (i.e., not intrinsically dependent on time) for simplicity — is said to be *conservative* if there is a *potential function* $V(\mathbf{x})$ such that

$$\mathbf{F}(\mathbf{x}) = -\nabla V(\mathbf{x}).$$

Here, ' ∇ ' denotes the gradient operator,

$$\nabla V = \left(\frac{\partial V}{\partial x}, \, \frac{\partial V}{\partial y}, \, \frac{\partial V}{\partial z}\right).$$

• For a conservative force field, we can find a *conserved quantity* along the Newtonian trajectories, namely the *total mechanical energy*.

$$E = H(\mathbf{x}, \mathbf{p}) := \frac{1}{2m} \mathbf{p}^2 + V(\mathbf{x}).$$

Here, $\mathbf{p}^2 := \mathbf{p} \cdot \mathbf{p} = ||\mathbf{p}||^2$, and $\mathbf{p} := m\mathbf{v} := m\dot{\mathbf{x}}$ is the momentum.

1.5 Tue, Sept 10: Alternative Formulations of Newtonian Mechanics

• The Hamiltonian formulation:

$$\dot{\mathbf{x}} = \frac{\partial H}{\partial \mathbf{p}}, \quad \dot{\mathbf{p}} = -\frac{\partial H}{\partial \mathbf{x}}.$$

• The Lagrangian formulation:

$$\delta S[\mathbf{x}(t)] = 0,$$

where the *action* on the time interval $[t_a, t_b]$ is given by

$$S[\mathbf{x}(t)] := \int_{t_a}^{t_b} \left[\frac{m}{2} \dot{\mathbf{x}}(t)^2 - V(\mathbf{x}(t)) \right] dt.$$

• Etc.

 $\mathbf{2}$