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Motivation

▶ In Reinforcement learning (RL), Markov Decision Processes (MDPs) provide a
robust framework for modeling sequential decision-making. However, most
classical RL algorithms assume stationary environments, where the transition
dynamics and reward functions remain fixed over time

▶ Mathematically, this requires developing methods to handle time-dependent
distributions, non-stationary dynamics, and the need for robust optimization
in the face of shifting environment parameters.

The Problem of Pareto Optimality in Non-stationary MDPs
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Setting up the Continual RL Problem(Mathematical Definition)

(General CRL Problem MCRL):a

Given a state S, action-space A, an observation space O, a reward function r : SxA → R,
a transition function p : SxA → S , and an observation function x : S → O, the most
general continual reinforcement learning problem problem can be expressed as

MCRL = ⟨S(t),A(t), r(t), p(t), x(t),O(t)⟩

where each component of the problem formulation can be considered as a non-stationary
function of form f (i , t) where i is the input specific to each component.

a
Khetarpal et.al 2022, Towards Continual Reinforcement Learning: A Review and Perspectives

Assumptions for Non-stationary Functional Form f (i , t):

▶ Lipschitz Continuity

▶ Piecewise Non-Stationarity
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Non-Stationary MDPs

Definition(Non-stationary MDPs)

Non-stationary MDP as a special type of CRL Problem:a

where α ⊆ {S,A, r , p}, the observation function is an appropriate identity matrix
x = I and the observation space is the state space O = S

MCRL = ⟨S(t),A(t), r(t), p(t), x(t),O(t)⟩

aKhetarpal et.al 2022, Towards Continual Reinforcement Learning: A Review and Perspectives
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A Taxonomy of Continual RL Formalisms

A categorisation of non-stationarity along two primary dimensions:1

▶ Scope of Non-Stationarity (α)

▶ Driver of Non-Stationarity (β)

Definition(scope of Non-stationarity α): defines what elements of the
agent-environment interaction proces experience non-stationarity:

α ⊆ {S,A, r , p, x ,O}

where p ∈ α if ∃t, t ′ ∈ R, p(t)!= p(t ′), r ∈ α if ∃t, t ′ ∈ R, r(t)!= r(t ′), etc.

1Khetarpal et.al 2022, Towards Continual Reinforcement Learning: A Review and Perspectives
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A Taxonomy of Continual RL Formalisms(2)

Definition(Driver of Non-stationarity β): defines the causal assumptions that can be
made about the nature of the evolution of non-stationary environment dynamics

β ⊆ {stationary , passive, active, hybrid}

where

▶ stationary ⇒ E[f (i , t)] = E[f (i , t ′)] ∀t ∈ ℜ, ∀t ′ > t, ∀i ∈ I
▶ passive ⇒ if E[f (i , t)] ̸= E[f (i , t ′)], then |E[f (i , t)]− E[f (i , t ′)]|̸⊥ a, ∀a ∈ A,
∀t ′ > t, ∀i ∈ I

▶ active ⇒ if E[f (i , t)] ̸= E[f (i , t ′)], then |E[f (i , t)]− E[f (i , t ′)]|⊥ a, ∀a ∈ A,
∀a ∈ A, ∀t ′ > t, ∀i ∈ I

▶ hybrid ⇒ if E[f (i , t)] ̸= E[f (i , t ′)], then |E[f (i , t)]− E[f (i , t ′)]|⊥ a, ∃a ∈ A,
∃t ∈ ℜ,∀t ′ > t, ∃i ∈ I and |E[f (i , t)]− E[f (i , t ′)]|̸⊥ a,∃a ∈ A, ∃t ∈ ℜ, ∀t ′ > t,
∀i ∈ I
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Markov Property

Definition (Markov Property). Let (Xn)n≥0 be a stochastic process. The process
has the Markov property if for any n ≥ 0 and any possible states i0, . . . , in, j :

P(Xn+1 = j |Xn = in,Xn−1 = in−1, . . . ,X0 = i0)

= P(Xn+1 = j |Xn = in)

This means that the future state depends only on the present state and not on the
past states.
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State Transition Matrix

For a markov state s and successor state s ′, the state transition probability is defined by

Pss′ = P[St+1 = s ′|St = s]

State transition matrix P defines transition probabilities from all successor states s ′

Pss′ = from


P11 ... P1n
. .
. .
. .
Pn1 ... Pnn


where each row of the matrix sums to 1
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Markov Processes

Markov Process
A Markov Process (or Markov Chain) is a tuple ⟨S,P⟩
▶ S is a (finite) set of states

▶ P is a state transition probability matrix,

Pss′ = P[St+1 = s ′|St = s]
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Markov Reward Process

Definition
A Markov Reward Process is a tuple ⟨S,P,R, γ⟩
▶ S is a finite set of states

▶ P is a state transition probability matrix, Pss′ = P[St+1 = s ′|St = s]

▶ R is a reward function, Rs = E[Rt+1|St = s]

▶ γ is a discount factor, γ ∈ [0, 1]
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Return

Definition
The return Gt is the total discounted reward from time-step t

Gt = Rt+1 + γRt+2 + ... =
∞∑
k=0

γkRt+k+1

▶ The ”discount” γ ∈ [0, 1] is the present value of future rewards
▶ This values immediate reward above delayed reward

▶ γ close to 0 leads to ”myopic” evaluation
▶ γ close to 1 leads to ”far-sighted” evaluation
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Markov Decision Process

A Markov Decision Process (MDP) is a Markov reward process with decisions

A Markov Decision Process is a tuple ⟨S,A,P,R, γ⟩

▶ S is a finite set of states

▶ A is a finite set of actions

▶ P is a state transition probability matrix, Pa
ss′ = P[St+1 = s ′|St = s,At = a]

It’s called four p-argument, Pa
ss′ = p(s ′, r |s, a)

▶ R is a reward function, Rs = E[Rt+1|St = s,At = a]

▶ γ is a discount factor, γ ∈ [0, 1]
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Policy

A policy π is a distribution over actions given states,

π(a|s) = P[At = a|St = s]

▶ Policies are stationary(time-independent), At π(·|St), ∀t > 0

▶ Given an MDP M = ⟨S,A,P,R, γ⟩ and a policy π

▶ Sequence S1,S2,S3, ... is a Markov Process ⟨S,Pπ⟩
▶ Sequence S1,R2,S2, ... is a Markov Reward Process ⟨S,Pπ,Rπ, γ⟩, where

Pπ
s,s′ =

∑
a∈A

π(a|s)Pa
ss′

Rπ
s =

∑
a∈A

π(a|s)Ra
s
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Value Function

State-Value Function:
The state-value function vπ(s) of an MDP is the expected return starting from state s, and then
following policy π

vπ(s) = Eπ[Gt |St = s]

Optimal state-value function v∗(s) is the maximum value function over all policies

v∗(s) = max
π

vπ(s)

Action-Value Function:
The action-value function qπ(s, a) is the expected return starting from state s, taking action a, and
then following policy π

qπ(s, a) = Eπ[Gt |St = s,At = a]

Optimal action-value function q∗(s, a) is the maximum action-value function over all policies

q∗(s, a) = max
π

qπ(s, a)
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Bellman Expectation Equation

Decomposing state-value function further

vπ(s) = Eπ[Rt+1 + γvπ(St+1)|St = s]

Decomposing Action-value function further

qπ(s, a) = Eπ[Rt+1 + γqπ(St+1),At+1|St = s,At = a]

In Matrix form, Bellman expectation equation can be written as

vπ = Rπ + γPπvπ

with direct solution
vπ = (I − γPπ)−1Rπ
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Bellman Expectation Equations for Vπ and Qπ (1)

vπ(s) =
∑
a∈A

π(a|s)qπ(s, a) qπ(s, a) = Ra
s + γ

∑
s′∈S
Pa
ss′vπ(s

′)

2

2David Silver UCL Course on Reinforcement Learning(Advanced Topics) 2015
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Bellman Expectation Equations for Vπ and Qπ (2)

vπ(s) =
∑
a∈A

π(a|s)

(
Ra

ss′+γ
∑
s′∈S
Pa
ss′vπ(s

′)

)
qπ(s, a) = Ra

s+γ
∑
s′∈S
Pa
ss′

∑
a′∈A

π(a′|s ′)qπ(s ′|a′)

3

3David Silver UCL Course on Reinforcement Learning(Advanced Topics) 2015
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Solving Bellman Optimality Equation

An optimal policy can be found by maximizing over q∗(s, a),

π∗(a|s) =

1, if a = argmax
a∈A

q∗(s, a).

0, otherwise
(1)

▶ Bellman Optimality Equation in non-linear

▶ No closed form solution (in general)
▶ Iterative Solution Methods

▶ Value Iteration (Exact Solution Method)
▶ Policy Iteration (Exact Solution Method)
▶ Q-Learning (Sampling Based Method, Off-Policy TD)
▶ SARSA (Sampling Based Method, On-Policy TD) etc..

Thesis Seminar(Mid-Term Progress) 11th November 2024 19 / 45



Taxonomy of Solution Methods for MDPs
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Exact Solution Methods: Known MDP Model

Figure: Taxonomy Exact Solution Methods: Known Model
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Small Grid World Example
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Iterative Policy Evaluation in Small Grid World

4

4David Silver UCL Course on Reinforcement Learning(Advanced Topics) 2015
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Exact Solution Methods: Policy Iteration Method (2)

Iterative Policy Improvement (Control)
Given a policy π

▶ Evaluate the policy π
vπ(s) = E[Rt+1 + γRt+2 + ...|St = s] (2)

▶ Improve the policy by acting greedily with respect to vπ

π
′
= greedy(vπ)

= argmax
a

qπ(s)

= argmax
a

E[Rt+1 + γvπ(St+1|St = s,At = a]

= argmax
a

∑
s′,r

p(s ′, r |s, a)[r + γvπ(s
′)]

(3)

Note: This Process of Policy Iteration always converges to π∗ (By Contraction Mapping Theorem)
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Exact Solution Methods: Value Iteration

Question? Why not update policy every iteration instead of waiting for policy evaluation to
converge
If we know solution to sub problems v∗(s

′), then solution to v∗(s) can be found by one-step
lookahead

v∗(s)← max
a∈A
Ra

s + γ
∑
s′∈S
Pa
ss′v∗(s

′) (4)

Similarly Q-Value Iteration can be written as:

Qk+1(s, a)←
∑
s′

p(s ′, r |s, a)[r + γmax
a′
Qk(s

′, a′)]

Idea: Apply The updates iteratively
Intuition: Start with final rewards and work backwards
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Theoretical Guarantees

Value Function Space

▶ Consider the vector space V over value functions with |S| dimensions

▶ Each point in this space fully specifies a value function v(s)

Value Function ∞-Norm

▶ Measure distance between state-value functions u and v by the ∞-norm i.e. the largest difference between state values,

∥u − v∥∞= max
s∈S

|u(s) − v(s)|

Bellman Expectation Backup Operator

T π(v) = Rπ + γPπv

This operator is a γ-contraction, i.e. it
makes value functions closer by at least γ,

∥T π(u) − T π(v)∥∞ = ∥(Rπ + γPπu) − (Rπ + γPπv)∥∞

= ∥γPπ(u − v)∥∞

≤ ∥γPπ∥u − v∥∞∥∞
≤ γ∥u − v∥∞

Bellman Optimality Backup Operator

T ∗(v) = max
a∈A

Ra + γPav

This operator is a γ-contraction, i.e. it
makes value functions closer by at least γ,

∥T ∗(u) − T ∗(v)∥∞≤ γ∥u − v∥∞
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Contraction Mapping Theorem

Theorem(Contraction Mapping Theorem)
For any metric space V that is complete (i.e. closed) under an operator T (v) where
T is a γ-contraction,

▶ T converges to a unique fixed point

▶ At linear convergence rate of γ

5

5Reinforcement Leraning: An Introduction, Richard Sutton and Andrew Barto, 1998
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Policy Iteration and Value Iteration Convergence

Convergence of Iterative Policy Evaluation and Policy Iteration
Idea: The Bellman expectation operator T π has a unique fixed point i.e. vπ(by
Bellman Expectation Equation).
By contraction mapping theorem, Iterative Policy Evaluation converges on vπ and
Policy Iteration converges on v∗

Convergence of Value Iteration
Idea: The Bellman Operator T ∗ has a unique fixed point i.e. v∗ (by Bellman
Optimality Equation).
By Contraction Mapping Theorem, Value Iteration Converges on v∗
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Limitations of Exact Solution Methods:

Two Major Limitations of Exact Solution Methods:

▶ Need to know Pa
ss′ of the MDP → FIX: Sampling-Based Methods

▶ Idea: Using sample rewards and sample transitions i.e. ⟨S,A,R,S ′⟩ instead of
reward function R and transition dynamics P

▶ Advantages:
▶ Model-Free: No advance knowledge of MDP required
▶ Breaks the curse of dimensionality theory sampling
▶ Cost of backup is constant, independent of n = ∥S∥

▶ Memory Exploding: Storage of values for all states and actions (only possible for

small discrete state-action space) → FIX: Q/V function fitting (Note:

Although this can be fixed by Approximate Dynamic Programming)
6

6Deep RL Bootcamp 2017 by Pieter Abbeel , UC Berkeley
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Model-Free Methods(or Sampling Based Methods): Unknown MDP
Model
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Value Based Methods

Figure: Taxonomy Model-Free Methods: Value Based Methods
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Temporal Difference Based: Prediction

▶ TD Can learn before knowing the final outcome (i.e. TD can learn online after
every step)

▶ TD Can learn from incomplete sequences

▶ TD works in continuing (non-terminating) environments

▶ We start with simplest temporal-difference learning algorithm: TD(0)
▶ Update value V(St) toward estimated return Rt+1 + γV(St)

V(St)← V(St) + α(Rt+1 + γV(St+1)− V(St))

▶ Rt+1 + γV(St+1 → TD target

▶ δt = Rt+1 + γV(St+1)− V(St) → TD Error

7

7David Silver UCL Course on Reinforcement Learning(Advanced Topics) 2015
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Off-Policy TD-Learning (Q-Learning)

▶ Q-Value Iteration can be written as:
Qk+1(s, a)←

∑
s′ p(s

′, r |s, a)[r + γmaxa′ Qk(s
′, a′)]

▶ Rewrite as expectation: Qk+1 ← Es′∼p(s′,r |s,a)[r + γmaxa′ Qk(s
′, a′)]

▶ (Tabular) Q-Learning: Replace expectation by samples
▶ For an state-action pair (s, a), receive: s ′ ∼ P(s ′|s, a)(same as p(s ′, r |s, a) from

before)
▶ Consider your old estimate Qk(s, a)
▶ Consider your new sample estimate:

target(s ′) = r + γQk(s
′, a′)

▶ Incorporate the new estimate into a running average:

Qk+1(s, a)← (1− α)Qk(s, a) + α[target(s ′)]
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Comparisons: MC, TD, DP

Monte-Carlo Backup Temporal Difference Backup Dynamic Programming
Backup

8

8David Silver UCL Course on Reinforcement Learning(Advanced Topics) 2015
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Approximation Based Methods for Q/V (Deep Q Learning)

Motivation: Tabular methods for Q (Q-Learning) doesn’t scale with large MDPs with many state-action pairs
Solution: Use function approximators (e.g. Neural networks etc.) to approximate Q values
Catch: TD-Based methods with bootstrapping are good to work with, however when off-policy, nonlinear
function approximation and bootstrapping are combined in one RL algorithm, the training could be unstable and
hard to converge. (This is known as Deadly Triad Issue)

Deep Q Networks (DQN) greatly improve and stabilize the training procedure of Q-learning by two methods:

▶ Experience Replay

▶ Periodically updated target

And the loss function we try to optimize for looks like this:

L(θ) = E
(s,a,r,s′)∼U(D)

[(r + γmax
a′

Q(s′, a′; θ−)−Q(s, a; θ))2]

where U(D) is a uniform distribution over the replay memory D
θ− is the parameters of the frozen target Q-network 9

9
Lilian Weng’s Blog: A (Long) Peek into Reinforcement Learning
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Model-Free Setting: Policy Based Methods

In value based we approximated the value or action-value function using parameters θ

Vθ(s) = Vπ(s)

Qθ(s, a) = Qπ(s, a)

And a policy was generated directly from the value function. (e.g. ϵ-greedy) Now, in policy
based methods we directly parametrise the policy

πθ(s, a) = P[a|s, θ] = g(ϕ(s, a), θ)

similar to Qθ(s, a) = f (ϕ(s, a), θ)
Goal: Given policy πθ(s, a) with parameters θ, find best θ that maximises J (θ)

In Episodic environments:(Use
start value)

J1(θ) = Vπθ (s1) = E[v1]

In Continuing Environments:
(Use average value)

JavR(θ) =
∑
s

dπθ (s)
∑
a

πθ(s, a)Ra
s
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Policy Based Methods

Figure: Taxonomy Model-Free Methods: Policy Based Methods
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Policy Gradient Theorem

For any differentiable policy πθ(s, a), for any of the policy objective functions J =
J1,JavRor 1

1−γJavV the policy gradient is

∇θJ (θ) = E
πθ

[∇θ log πθ(s, a)Qπθ (s, a)]

Proof Outline:10

▶ Express J(θ) in Terms of the Action-Value Function:
Using the action-value function Qπ(s, a), we can rewrite J(θ) as:

J(θ) =
∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)Qπ(s, a),

where dπ(s) is the stationary distribution of states under policy πθ.

10Reinforcement Leraning: An Introduction, Richard Sutton and Andrew Barto
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Policy Gradient Theorem (Proof Outline)

▶ Take the Gradient with Respect to θ:
We now take the gradient of J(θ):

∇θJ(θ) =
∑
s∈S
∇θdπ(s)

∑
a∈A

πθ(a|s)Qπ(s, a) +
∑
s∈S

dπ(s)
∑
a∈A
∇θπθ(a|s)Qπ(s, a).

▶ Approximate ∇θdπ(s) Using the Markov Property:
Given that dπ(s) depends indirectly on θ through πθ, we simplify by focusing on the term
involving ∇θπθ(a|s).

▶ Rewrite the Gradient Using the Log Trick:
Applying the ”log trick” to the second term:

∇θJ(θ) =
∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)∇θ log πθ(a|s)Qπ(s, a).

This can be written as an expectation: ∇θJ(θ) = Es∼dπ,a∼πθ
[∇θ log πθ(a|s)Qπ(s, a)] .
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Existing Success in Solving Non-Stationary MDPs

▶ Optimizing for the Future:11

Idea: Stopping the iterative convergence process before reaching optimal policy and using future
forecasting to optimize the expectation values over forecasted future

▶ Meta-Learning Approaches(Model Agnostic Meta-Learning) 12

find a good initial set of model parameters that can quickly adapt to new tasks with just a few gradient
steps by explicitly optimizing the model’s performance after one or few gradient updates on a new
task, creating a ”meta-objective” that maximizes the model’s ability to learn quickly rather than its
direct performance on any single task

▶ Unsupervised Zero-Shot RL with Functional Reward Encodings 13

▶ Continual Model-Based RL with HyperNetworks: 14

11
Chandak et.al, Optimizing for the Future in Non-Stationary MDPs (ICML 2020)

12
Chelsea Finn et.al 2017 Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks(ICML 2017)

13
Abbeel et.al 2024, Unsupervised Zero-Shot Reinforcement Learning via Functional Reward Encodings(ICML 2024)

14
Huang et.al 2021, Continual Model-Based Reinforcement Learning with Hypernetworks
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Methodology of My thesis work

Problem: Learning optimal policies in non-stationary MDPs while not losing performance over the past MDPs
Idea: can be addressed by storing samples of interactions (Markovian transitions E.g.:s, a, s′, a′, s′′, a′′, ..) and
replaying it during the optimization process( i.e. Experience memory replay methods)

Bottleneck: Storing Markovian Transitions as the number of tasks grow will result in memory exploding
and doesn’t scale well

Proposed Solution: Recent works on Online function approximation methods for storing memory repres-
entations of past sequences from the sequence modelling and SSM (state space models) literature have
shown incredible promise for storing very long past sequences for improving context length as structured
matrices (e.g. HiPPO) a

a
Gu et.al 2020, HiPPO: Recurrent Memory with Optimal Polynomial Projections

We plan to implement this strategy to tackle the exploding memory problem in our case across Non-stationary
MDPs by treating the Markovian transitions as time-dependent sequences
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Experimental Setup and Baselines

Benchmarks:

▶ Atari (Bellemare et al., 2013), 6 task sequence: A standard, proven benchmark used by Schwarz et al.
(2018b) and Rolnick et al. (2019), particularly to demonstrate resilience to catastrophic forgetting

▶ Procgen (Cobbe et al., 2020), 6 task sequence: Designed to test resilience to forgetting and
in-distribution generalization to unseen contexts in procedurally-generated, visually-distinct environments

Baselines:

For Atari:

▶ EWC (Elastic Weight Consolidation) typically
achieves around 50-60 percent

▶ A3C with Progressive Networks serves as a
common baseline, usually maintaining 70-80
percent

▶ PPO (Proximal Policy Optimization) without
any continual learning mechanisms often
shows catastrophic forgetting, dropping to
20-30 percent

For ProcGen:

▶ Standard PPO baseline achieves around 5-7
mean training level performance across
environments

▶ UCB (Upper Confidence Bound) exploration
strategies typically reach 8-10 mean training
level performance

▶ PLR (Prioritized Level Replay) methods
achieve approximately 12-15 mean training
level performance

Note: Metric used to measure the performance is ”Performance Retention”
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Questions?

”The only stupid question is the one you were afraid to ask but never did”
- Richard Sutton
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