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Motivation

A Brief History of RL

▶ Reinforcement Learning has over 70 years of rich academic history.

▶ Its origins trace back to the 1950s, rooted in early studies of Markov Decision
Processes (MDPs).

▶ MDPs formalize sequential decision-making under uncertainty.

▶ MDPs are discrete, stochastic analogs of optimal control problems, closely related
to Hamilton–Jacobi–Bellman (HJB) equations.
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Motivation

Success of Reinforcement Learning: AlphaGo 2016

AlphaGo(2016 Seoul South Korea)

Figure: Lee Sedol against AlphaGo
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Motivation

MuZero 2019(Schrittwieser et al., Nov 2019)
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Motivation

Success of Reinforcement Learning: 2024 ACM Turing Award
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Motivation

But the Problem is...

Still a lot of problems in RL are not solved yet!! Along the direction of tasks scalability
we have one such problem: Non-stationarity and Continual learning of tasks

Figure: On Left: Khetarpal et al. (2022), On Right: Abel et al. (2023)

MS Thesis Defense 2nd May 2025 8 / 45



Motivation

Motivation: Why Continual RL?

▶ In real-world scenarios, agents face a
sequence of tasks — not a fixed one.

▶ This leads to non-stationarity in
dynamics, rewards, and data distribution.

▶ Examples:
▶ A robot learning new skills across

environments.
▶ A recommendation system adapting to

evolving user preferences.
▶ An autonomous agent navigating

changing traffic or weather.
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Problem Statement

Continual RL Problem Setting

(General CRL Problem MCRL):a

Given a state S, action-space A, an observation space O, a reward function r : SxA → R,
a transition function p : SxA → S , and an observation function x : S → O, the most
general continual reinforcement learning problem problem can be expressed as

MCRL = ⟨S(t),A(t), r(t), p(t), x(t),O(t)⟩

where each component of the problem formulation can be considered as a non-stationary
function of form f (i , t) where i is the input specific to each component.

a
Khetarpal et.al 2022, Towards Continual Reinforcement Learning: A Review and Perspectives

Assumptions for Non-stationary Functional Form f (i , t): Lipschitz Continuity and
Piecewise Non-stationarity
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Problem Statement

The Non-Stationarity Problem

Definition(Non-stationary MDPs)

Non-stationary MDP as a special type of CRL Problem:a

where scope of non-stationarity i.e. α ⊆ {S,A, r , p}, the observation function is an
appropriate identity matrix x = I and the observation space is the state spaceO = S

MCRL = ⟨S(t),A(t), r(t), p(t)⟩

aKhetarpal et.al 2022, Towards Continual Reinforcement Learning: A Review and Perspectives
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Problem Statement

Scoping in..

Based on the scope of Non-stationary (α) which defines what elements have
non-stationarity1

α ⊆ {S,A, r , p, x ,O}

For our problem setting, we assume the scope includes transition function p and
reward function r . So,

MCRL = ⟨S,A, r(t), p(t)⟩

1Khetarpal et.al 2022, Towards Continual Reinforcement Learning: A Review and Perspectives
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Problem Statement

Core Challenges in Continual RL

▶ Forward Transfer: how pre-training on an
earlier task Ti speeds up convergence on a
later task Tj

▶ Backward Transfer: how learning task Tj
improves performance on a previous task Ti

▶ Catastrophic Forgetting: drop in
performance on earlier tasks Ti after
training sequentially up to Tt

2

2Wang et.al 2023, A Comprehensive Survey of Continual Learning: Theory, Method and Application
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Background

Markov Decision Process

An MDP is defined by:

▶ Set of states S

▶ Set of actions A

▶ Transition function P(s ′ | s, a)
▶ Reward function R(s, a, s ′)

▶ Start state s0
▶ Discount factor γ

▶ Horizon H

Goal:

max
π

E

[
H∑
t=0

γtR(St ,At ,St+1) | π

]

Optimal Control: Given an MDP (S,A,P,R, γ,H), Find an optimal policy π∗ 3

3Deep RL Bootcamp 2017 by Pieter Abbeel , UC Berkeley
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Background

Bellman Equations and Related Terms

Value function for a state s

V∗(s) = max
π

E

[
H∑
t=0

γtR(st , at , st+1)

∣∣∣∣∣ π, s0 = s

]

= sum of discounted rewards when starting from state s and acting optimally

But knowing the value of a state is not enough if we also need to know which action
to take
Instead of just states, what if we assign values to (state,action) pairs?

Q∗(s, a) = max
π

E
[
ΣH
t=0γ

tR(st , at , st−1) | s0 = s, a0 = a, π

]
tell us how good it is to take action a at state s and then act optimally
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Background

Broad Taxonomy of RL Algorithms

Depending on the quantity we choose to
optimize, reinforcement-learning algorithms fall
into two main classes:

▶ Value-based methods, which learn an
action-value function Q(s, a).

▶ Policy-based methods, which directly
optimize a parameterized policy πθ to
maximize the expected return.
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Background

Introducing Q-Learning

Bellman Equations for Q∗: Optimal action-values must satisfy a recursive relationship...

Q∗ = E[R(s, a, s ′) + γmax
a′
Q∗(s ′, a′)]

We don’t know Q exactly, but we can learn iteratively by updating estimates based on
this recursive formula.
The Q-Learning update rule

Q(s, a)← Q(s, a) + α(r + γmax
a′
Q(s ′, a′)−Q(s, a))

This gives us the direct way to estimate Q-values without knowing the model of the
environment
Limitations: We cannot store all Q-values in a table for every state-action pair in
large state-action spaces
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Background

Deep Q-Learning(Mnih et al., 2013)

Motivation: We need a way to generalize
Q-values across similar states. Neural networks
are a good choice of function approximations
for Q-values.

In Deep Q-Learning, given a state s, a neural
network outputs Q-values for all actions.

Q is parameterized by a neural network with
weights θ

Training using this objective:

L(θ) = (r + γmaxa′ Q(s ′, a′; θ−)−Q(s, a; θ))2

Important Tricks:

▶ Experience Replay

▶ Target networks

After each training step we use Q∗ we
implicitly derive the corresponding π∗

and use it to sample new actions
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Background

Improving DQN: Rainbow DQN

Hessel et.al 2017, Rainbow: Combining improvements in Deep Reinforcement Learning
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Background

Policy Optimization via Likelihood Ratio Gradient

Policy Optimization Approach:

Rather than computing Q∗ first, we
directly optimize:

max
θ

E

[
H∑
t=0

R(st) | πθ

]
(1)

where θ parameterizes policy πθ

Likelihood Ratio Method:

For trajectory τ = (s0, a0, . . .) with return
R(τ):

U(θ) = Eτ∼πθ
[R(τ)] (2)

=
∑
τ

P(τ ; θ)R(τ) (3)

Goal: maxθ U(θ)

This gradient-based approach directly optimizes policy parameters instead of deriving
policy from value functions. 4

4Deep RL Bootcamp 2017 by Pieter Abbeel , UC Berkeley
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Background

Likelihood Ratio Policy Gradient (Sutton et al., 1999)

U(θ) =
∑
τ

P(τ ; θ)R(τ) (4)

Taking gradient w.r.t θ:

∇θU(θ) =
∑
τ

∇θP(τ ; θ)R(τ) (5)

Using the identity:

∇θP(τ ; θ) = P(τ ; θ)∇θ logP(τ ; θ) (6)

we get: ∇θU(θ) = Eτ∼πθ
[∇θ logP(τ ; θ)R(τ)]

Limitations

▶ High variance in
gradient
estimates

▶ Sample
inefficient

▶ Sensitive to step
size
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Background

Motivation for Natural Policy Gradient

Problem: The standard policy gradient uses the Euclidean gradient, which is not invariant to
the parameterization of the policy.

Idea: Use the Natural Gradient, which accounts for the geometry of the policy space.

∇Natural
θ U(θ) = F (θ)−1∇θU(θ)

where F (θ) is the Fisher Information Matrix.

Interpretation: Move in the steepest ascent direction measured under KL-divergence rather
than Euclidean distance.

Limitations: Still sensitive to step-sizes, No Guarantee of Monotonic improvement towards
optimal policy, No Explicit trust region constraints 5

5Kakade et.al 2001, A Natural Policy Gradient
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Background

Trust Region Policy Optimization (TRPO) and PPO

TRPO: Solve a constrained optimization:

max
θ

E
[
πθ(a|s)
πθold(a|s)

Aπθold (s, a)

]
subject to:

E [DKL(πθold(·|s)∥πθ(·|s))] ≤ δ

PPO: Simplifies TRPO by using a clipped surrogate objective:

LCLIP(θ) = E [min (r(θ)A, clip(r(θ), 1− ϵ, 1 + ϵ)A)]

where r(θ) = πθ(a|s)
πθold

(a|s) .
6 7

6Schulman et.al 2015, Trust Region Policy Optimization
7Schulman et.al 2017, Proximal Policy Optimization Algorithms
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Background

Maximum Entropy RL Framework: SAC (Haarnoja et al., 2018)

Motivation: Previous methods (TRPO, PPO) focus on constrained maximization of
expected return. SAC(Haarnoja et al., 2018) instead maximizes a soft, entropy-augmented
objective for better exploration and robustness.

SAC Objective:

π∗ = argmax
π

Eπ

[
H∑
t=0

γt (R(st , at) + αH(π(·|st)))

]
where H(π(·|s)) = Ea∼π(·|s) [− log π(a|s)] is the policy entropy.

Key Differences:

▶ Entropy regularization: encourages stochastic policies for exploration.

▶ Off-policy learning: reuses experience efficiently.

▶ Energy-based policies: policies are learned implicitly via Q-functions.

Result: SAC achieves better sample efficiency and stability in practice.
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Background

The Three Representative Algorithms
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Existing Literature

Existing Methods in Continual RL

Continual learning in RL is an
relatively less explored than continual
learning in other settings (supervised
and unsupervised setting).

Examples of some approaches: CLEAR
(He and Sick, 2021), Modular Lifelong
learning with neural
composition(Mendez et al., 2022),
Lifelong Reinforcement Learning with
Modulating Masks (Ben-Iwhiwhu
et al., 2023)

Figure: Taxonomy of Continual RL approaches
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Existing Literature

Drawbacks

Figure: Strengths and Weaknesses of Existing Methods in Continual RL
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Existing Literature

Gradient Interference and Alignment in Continual RL

Gradient Interference: When two task
gradients point in conflicting directions,
updating on one degrades performance on
the other:

∇θLi · ∇θLj < 0

Impact:

▶ Interference ⇒ catastrophic
forgetting

▶ Alignment ⇒ continual improvement
across tasks

Gradient Alignment: When gradients for different
tasks point similarly, updates yield positive transfer:

∇θLi · ∇θLj > 0

Here, gi = ∇θLi and gj = ∇θLj
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Proposed Solution

MAML: Model-Agnostic Meta-Learning

Bi-level Optimization: Inner and Outer Loop
Updates

MAML (Finn et al., 2017)
Meta-objective:

min
θ

∑
τ∈T
Lτ (Uk(θ)), U(θ) = θ − α∇θLτ (θ)

Learn a common initialization θ such that k
inner-loop gradient steps on task τ minimize its loss.

Inner loop: Task-specific adaptation via SGD.
Outer loop: Meta-optimization over many tasks.

Figure: MAML update scheme showing fast
adaptation and meta-update.

8

8Chelsea Finn et.al 2017 Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks(ICML 2017)
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Proposed Solution

MAML vs Look-Ahead MAML

Look-Ahead MAML (Gupta et al., 2020)
We seek parameters θ and per-parameter step-sizes
α to minimize over tasks {T }ti=1

min
θ,α

Eτt

[
Lmeta

(
Uk(θ, α; τt)

)]
U(θ, α; τ) = θ − α⊙∇θℓinner(θ; τ).

First-order hypergradient:

gα =
∂Lmeta(θk)

∂α
= ∇θkLmeta(θk)·

− k−1∑
j=0

∇θj ℓinner(θj)


α← max(0, α− η gα), θ ← θ − α⊙∇θLmeta(θk).

to mitigate gradient interference

Figure: LookAhead MAML Approach
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Proposed Solution

Deriving the Hypergradient gα (Part 1)

We derive the meta-gradient w.r.t. per-parameter step-size α:

gα =
∂

∂α
Lmeta(θk) =

∂Lmeta(θk)

∂θk
· ∂θk
∂α

= ∇θLmeta(θk) ·
∂

∂α
(θk−1 − α ◦ ∇θℓinner(θk−1))

= ∇θLmeta(θk) ·
(
∂θk−1

∂α
− ∂

∂α
(α ◦ ∇θℓinner(θk−1))

)
We now recursively expand

∂θk−1

∂α using the update rule:

θj = θj−1 − α ◦ ∇θℓinner(θj−1)
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Proposed Solution

Deriving the Hypergradient gα (Part 2)

Unrolling the recursion:

∂θk
∂α

= −∇θℓinner(θk−1) +

(
∂θk−1

∂α
· ∂

∂θk−1
(−α ◦ ∇θℓinner(θk−1))

)
≈ −

k−1∑
j=0

∇θℓinner(θj) (First-order approximation: ignore higher-order α-dependence)

So the hypergradient becomes:

gα = ∇θLmeta(θk) ·

− k−1∑
j=0

∇θℓinner(θj)


Update Rule:

α← max(0, α− ηgα) (projected gradient descent)
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Proposed Solution

LookAhead MAML for Rainbow DQN, PPO and SAC
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Proposed Solution

Proposed Modifications for Look-Ahead MAML in RL Setup

▶ Experience Replay inside Inner Loop
We now do K gradient steps using fresh mini-batches from the replay buffer:

θj = θj−1 − α ◦ ∇θ[ℓinner(θj−1;Bj)], Bj ∼ D, j = 1, . . . ,K .

▶ Correcting for Off-Policy Bias
When we compute the inner-loop loss on replayed transitions (s, a, r , s ′) ∼ D, we weight
by the importance ratio:

ℓinner(θ) = −E s∼D
a∼πθold

[
w(s, a) log πθ(a | s)Qϕ(s, a)

]
, w(s, a) =

πθ(a | s)
πθold(a | s)

.

▶ Variance Control in Policy Updates
To stabilize the meta-gradient, we add a clipping or trust-region term to each inner step:

θj = θj−1 − α ◦ clip(∇θℓinner(θj−1), −δ, +δ), or equivalently constrain the KL:

min
θj

ℓinner(θj) s.t. KL[πθj ∥πθj−1 ] ≤ ϵ.
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Proposed Solution

Proposed Modifications for Look-Ahead MAML in RL Setup

Control Prior Definition
A fixed, well-tuned policy πprior(a | s) (e.g. LQR,
H-∞, PID) used to stabilize learning. For λ ∈ [0, 1]

▶ Mixture Policy

πmix(a | s) = (1− λ)πθ(a | s) + λπprior(a | s),

▶ Gradient Estimate

∇θJmix = Es,a∼πmix [∇θ log πmix(a | s)Q(s, a)].

▶ Variance Reduction

[∇θJmix] ≤ (1− λ)2 [∇θJ],

with bias O(λ).

1. Choose a stabilizing prior πprior.

2. Set mixing coef. λ (e.g. 0.1).

3. Collect rollouts under πmix.

4. Compute updates via
∇θ log πmix(a | s).

5. Optionally anneal λ over time.
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Conclusions

Conclusions

Look-Ahead MAML tackles gradient misalignment,
using per-parameter learning rates and
meta-objective with implementation trick that
includes replay memory through Reservoir Sampling
and populating a Replay Buffer (R)

Overall, we provide a mathematical derivation of the
objective functions for PPO, SAC, and the Rainbow
algorithm in LookAhead MAML framework. We
also provide modifications for the existing
LookAhead MAML framework to RL Setup.
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Conclusions

Future Work and Empirical Experiments

Atari benchmark:(diverse set of games) widely
used tested in RL.
57 games with different transition function and
reward functions

We plan to test and empirically demonstrate our
proposed method (La-MAML with PPO, SAC,
and Rainbow DQN) on a sequence of
games(tasks) from this benchmark. Figure: Arcade Learning Environment (ALE)

9

9Marc G. Bellemare et.al 2012, The Arcade Learning Environment: An Evaluation Platform for General
Agents
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Conclusions
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Conclusions

Questions?

”The only stupid question is the one you were afraid to ask but never did”
- Richard Sutton
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